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Abstract

This paper presents an efficient technique for analyzing inverse heat conduction problems using a Kalman Filter-enhanced Bayesian
Back Propagation Neural Network (KF-B2PNN). The training data required for the KF-B2PNN are prepared using the Continuous-
time analogue Hopfield Neural Network and the performance of the KF-B2PNN scheme is then examined in a series of numerical
simulations. The results show that the proposed method can predict the unknown parameters in the current inverse problems with an
acceptable error. The performance of the KF-B2PNN scheme is shown to be better than that of a stand-alone Back Propagation Neural
Network trained using the Levenberg–Marquardt algorithm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In forward heat conduction problems, the internal tem-
perature field is derived from the known heating character-
istics, boundary conditions and initial conditions of the
body of interest. Conversely, in inverse heat conduction
problems (IHCPs), experimental temperature measure-
ments are taken at boundary points or various other points
in the interior of the body and then used to estimate the
unknown boundary conditions at the external surface.
IHCPs are mathematically ill-posed in the sense that the
existence, uniqueness and stability of their solutions cannot
be assured [1]. Hence, they are generally solved using some
form of numerical technique. Classical approaches include
space marching [2,3] the single future time step method [1,
pp. 115–119], the function specification method [4,1, pp.
119–134], the regularization method [1, pp. 134–145], and
the trial function method [1, pp. 134–145]. However, as
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the capabilities of computer science and technology have
advanced, an increasing number of researchers have suc-
cessfully solved IHCPs using numerical methods such as
the Finite Element Method [5], the Finite Difference
Method (FDM) [6], or the Boundary Element Method
[7]. In a recent development, the emergence of artificial
neural network technology has led to an entirely new
approach for the solution of IHCPs [8–11].

This study applies the data fusion technique to solve
IHCPs. In general, data fusion approaches can be classified
as one of two main types, namely parametric or information
theoretic [12,13]. A typical parametric method is Kalman
filtering (KF), while a typical information theoretic method
is that of neural networks. However, both methods have
certain limitations. For example, KF requires the system
dynamics to be completely known and modeled as a
Gauss–Markov stochastic process. Furthermore, the statis-
tics of the system error and the observation error are
assumed to be normally distributed. However, many practi-
cal systems fail to conform fully to these conditions. Mean-
while, the limitations of the neural network approach
include the fact that their successful implementation
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Nomenclature

Ci amplifier input capacitance of ith neuron
CHNN Continuous-time analogue Hopfield Neural

Network
dj desired output of jth neuron
f(�) neuron activation function
H measurement matrix
Ii external input to ith neuron
k time (discretized)
K Kalman gain
KF-B2PNN Kalman filter-enhanced Bayesian back

propagation neural network
L thermal layer thickness
q heat flux
Q process noise covariance
R measurement noise covariance
Ri resistance of ith neuron
t time (continuous)
T temperaturebT i difference between temperature of ith neuron

and its neighbor
DT sampling interval
ui internal state of ith neuron
wij connection strength between neurons j and i

wg process noise vector
W coefficient matrix
X state vector
yj output of jth neuron
Z observation vector
C input matrix
a thermal diffusivity
b steepness of sigmoid function
dt sampling interval time
d direct delta function
m measurement noise vector
hk bias of neural network
j thermal conductivity
o null matrix
q total shunt capacitance
/ state transition matrix

Subscripts
i, j indices

Superscripts

T transpose of matrix
� dimensionless value
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depends on providing them with extensive artificial experi-
ence. Furthermore, a stand-alone neural network system is
not easily applied to some practical engineering problems,
and the attainable estimation accuracy is not always suffi-
ciently precise. Since both the parametric and the informa-
tion theoretic approaches encounter certain irresolvable
implementation problems, an alternative approach must
be sought. Chin proposed a hybrid system which combined
the KF scheme with a neural network to track a non-maneu-
vering target [14]. Subsequently, other researchers proposed
various neural network-aided Kalman filtering and data
fusion schemes for target tracking applications [15,16]. More
recently, a KF and neural network-based scheme was pro-
posed for identifying icing in the A340 aircraft [17].

This paper applies the KF to improve the performance
of a Bayesian Back Propagation Neural Network
(B2PNN) in solving IHCPs. The proposed scheme com-
bines the powerful estimation capabilities of the adaptive
KF and the strong learning capabilities of the BPNN.
Meanwhile, the Bayesian regularization method is applied
to improve the weak generalization capabilities of general
Back Propagation (BP) algorithms when applied to non-
linear function approximations and to take account of
the uncertain noise inherent in the current IHCPs.

This study commences by applying the CHNN scheme to
the forward heat conduction analysis of a one-dimensional
cylindrical coordinate system. The results of the forward
analysis are then used as training data for a three-layered
B2PNN integrated with an adaptive KF scheme (KF-
B2PNN). The trained KF-B2PNN scheme is employed to
solve various IHCPs with different heat profiles. To demon-
strate the performance of the proposed method, the conven-
tional stand-alone BPNN is also applied to solve the same
set of IHCPs. The stand-alone BPNN is trained using eight
different algorithms. The relative performance of each algo-
rithm is evaluated in terms of the convergence rate obtained
by the BPNN and the accuracy of the final solutions. These
algorithms include: (1) conjugate gradient back propaga-
tion with resilient back propagation (CRB) [18], (2) gradient
descent with momentum and adaptive learning rate back
propagation (GMB) [19], (3) Levenberg–Marquardt back
propagation (LMB) [20], (4) conjugate gradient back prop-
agation with Fletcher–Reeves updates (CBF) [21], (5) scaled
conjugate gradient back propagation (SCB) [21], (6) quasi-
Newton back propagation (QNB) [20, pp. 242], (7) one-step
Secant back propagation (OSB) [22], and (8) conjugate gra-
dient back propagation with Powell–Beale restarts (CBP)
[23]. The performance of the stand-alone BPNN trained
using the best training algorithm is then compared with that
of the proposed KF-B2PNN scheme when applied to solve
the same set of IHCPs.

2. Formulation of forward heat conduction problems

2.1. One-dimensional cylindrical coordinate system

This study commences by constructing the homoge-
neous differential equation for the one-dimensional heat
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conduction case. In this case, it is assumed that the one-
dimensional hollow cylinder has a thermally insulated sur-
face at r = b and that a time-varying heat flux, q(t), acts at
the inner surface, i.e., at r = a. The boundary and initial
conditions are indicated in the figure. The corresponding
system state equations can be expressed in dimensionless
form as [24]:

oeT
o~t
¼ o

2eT
o~r2
þ 1

�r
oeT
o~r
; a 6 ~r 6 b; ~t > 0; ð1aÞeT ð~r; 0Þ ¼ c0; a 6 ~r 6 b; ð1bÞ

oeT
o~r
¼ �~qð~tÞ; ~r ¼ a; ~t > 0; ð1cÞ

oeT
o~r
¼ 0; ~r ¼ b; ð1dÞ

where:

eT ¼ T � T 0

q0L=j
; ~q ¼ q

q0

; ~r ¼ r
L
; ~t ¼ at

L2
;

L ¼ b� a ¼ 1 ð1eÞ

in which c0 is the uniform initial temperature, a the thermal
diffusivity, j the thermal conductivity, q0 the nominal value
of the surface heat flux and ~qð~tÞ the dimensionless heat flux.
Note that for convenience, the superscript (�) is omitted
throughout the remainder of this paper.
2.2. Hopfield Neural Network

The Hopfield continuous-time dynamic neural network
constructed from n dynamic neural units is described by
the following non-linear differential equations [25,26]:

Ci
duiðtÞ

dt
¼
Xn

j¼1
i6¼j

wijyjðtÞ �
uiðtÞ
Ri
þ I iðtÞ; i¼ 1;2; . . . ;n ð2aÞ

yiðtÞ ¼ f ðuiðtÞÞ; i¼ 1;2; . . . ;n ð2bÞ

where ui is the internal state of the ith neuron,
1
Ri
¼
Pn

j¼1wij þ 1
qi

, 1
Rij
¼ wij, wij is the strength of the connec-

tion between neurons j and i, yj is the output of the jth neu-
ron, f(�) is the neuron activation function, Ii is the external
input to neuron i, and yi is the output signal from each neu-
ron, including the ith neuron.

The neuron’s output, i.e., yi ¼ f ðuiÞ, is a non-decreasing
function of the activation level. Hopfield network imple-
mentations generally employ a sigmoid activation function
such as the tanh function or a piecewise linear approxima-
tion to a sigmoid. The hyperbolic tangent sigmoid function
has the form:

f ðuiÞ ¼ tanhðbuiÞ ¼ ðebui � e�buiÞðebui þ e�buiÞ�1 ð3Þ

This sigmoid function is rotationally symmetric about
the origin of the coordinate axes, and asymptotically
approaches limiting points of (1, 1) and (�1,�1). The
parameter b in the sigmoid function is adjustable according
to the non-linearity of the problem. In this paper, a value
of b = 1/2 is used in the simulations.
2.3. Connectivity structure

In this study, the numerical solutions to the forward
heat conduction problems are obtained using the CHNN
scheme. The detailed derivations of this technique are
presented in [27]. This study considers the temperature dis-
tributions of heat conduction models with boundary condi-
tions and with some of the connective weight strengths
equal to zero. Therefore, the basic CHNN circuit diagram
can be modified to the form presented in Fig. 1. In this fig-
ure, the function f(t) represents the conversion between the
temperature and the corresponding voltage, and the neu-
ron weight strengths, W, are the inverse of the resistance
values of the CHNN. In practice, the temperature distribu-
tion weight strengths are variable. Therefore, during the
simulation process, a voltage converter is used to control
the current source in order to introduce non-linear weight
strengths throughout the circuit.
3. Formulation for inverse problems

3.1. Back propagation neural network

Fig. 2 illustrates a general BP neural network. As
shown, this network is a feed forward, fully-connected hier-
archical M-layered network consisting of an input layer,
M-2 hidden layers and an output layer. If the kth unit in
the Mth layer is denoted by (M,k), the state variable uM

k

for this unit, and its output signal yn
k to the units in the next

layer (uM
k þ 1; kÞ, can be written, respectively, as:

uM
k ¼

X
k

ðwM ;M�1
k;j uM�1

j þ hM
k Þ ð4Þ

yM
k ¼ f M

k ðuM
k Þ ð5Þ

where wM ;M�1
k;j is the connection strength between units

(M,k) and (M � 1, j), and hM
k and f M

k ð�Þ are the bias and
activation functions, respectively, of unit (M,k). Note that
the output signal yM

k is transmitted to all units in the next
(i.e., (M + 1)-th) layer.

In the current study, a stand-alone BPNN and a KF-
B2PNN scheme are used to solve various IHCPs. In the
solution procedure, the input parameters to the neural net-
work, i.e., u0 ¼ ðu0

1; u
0
2; . . .Þ, are temperature data at speci-

fied points in the interior of the object of interest, while
the outputs of the network, i.e., yM ¼ ðyM

1 ; y
M
2 ; . . .Þ, are

parameters relating to the boundary conditions, e.g., the
heat flux.
3.2. BPNN training

Using a BPNN to solve IHCPs involves two basic
stages, a learning stage, and a recalling stage. The learning
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Fig. 1. Modified Hopfield Neural Network connectivity circuit diagram for heat conduction temperature profiles.
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stage is essentially a supervised learning process conducted
using a training model and a set of target output values
chosen from the problem domain. The goal of the training
process is to modify the connection strengths, wM ;M�1

k;j , and
biases, hM

k , of the BPNN iteratively until the actual output
vector yM ¼ ðyM

1 ; y
M
2 ; . . .Þ lies within an acceptable error of

the target output vector, dM ¼ ðdM
1 ; d

M
2 ; . . .Þ. If the training

data set fully covers the problem space, and training is suc-
cessfully completed, the neural network will be capable of
providing accurate outputs for any arbitrary unknown
input in the subsequent recalling stage by applying the con-
nection strengths and biases established during the learning
stage.
Conventionally, a BP algorithm adjusts the connection
weights iteratively using the steepest descent technique.
However, the resulting convergence is inherently slow and
the solution may become trapped at local minima. Since
the introduction of the original BP learning algorithm,
extensive research has been conducted to improve the con-
vergence rate. This research has broadly followed one of
two different directions, namely (1) the development of ad
hoc techniques [18], such as varying the learning rate or
using momentum and rescaling variables, and (2) the appli-
cation of standard numerical optimization techniques
[19–23]. All of the proposed techniques improve the perfor-
mance of the traditional BPNN to a greater or lesser extent,
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and ultimately, the choice of the most appropriate algo-
rithm depends on the complexity of the target problem,
the volume of training data available, the size of the
network, and the acceptable error tolerance. This study
overcomes the weak generalization capabilities of BPN net-
works when applied to the solution of non-linear function
approximations by employing the Bayesian regularization
algorithm. The details of this algorithm are well docu-
mented in the literature [28,29], and hence are not repeated
here.

3.3. KF procedure

The one-dimensional hollow cylinder system process
equation is given by:

ZðtÞ ¼ T ðr; tÞ þ vðtÞ; r ¼ b; t > 0 ð6Þ

where Z(t) is the noise-corrupted temperature measure-
ment, in which v(t) is the measurement noise with an as-
sumed zero mean and white Gaussian distribution. The
state equation discretized over time intervals of length DT

has the form:

Xðk þ 1Þ ¼ /XðkÞ þ CbqðkÞ þ wgðkÞc ð7Þ

where

XðkÞ ¼ ½T1ðtÞT2ðtÞ � � �TM-1ðtÞTMðtÞ�T ð8aÞ
/ ¼ eWDT ð8bÞ

C ¼
Z ðkþ1ÞDT

kDT
expfW½ðk þ 1ÞDT � s�gWds ð8cÞ

In the above, XðkÞ represents the state vector, / is
the state transition matrix, C is the input matrix, q(k) is
the sequence of deterministic inputs, and wgðkÞ is the pro-
cess noise vector, which is assumed to have a zero mean
and white Gaussian distribution with a variance of
EfwgðkÞwT

g ðjÞg ¼ Qdkj, where dkj is a Dirac delta function.
The noise-corrupted temperature measurement equation

given in Eq. (6) can be expressed in matrix form as:

ZðkÞ ¼ HXðkÞ þ mðkÞ ð9Þ

where ZðkÞ is the observation vector at time k,
H ¼ 0 0 . . . 1½ � is the measurement matrix, and mðkÞ
is the measurement noise vector, which is assumed to have
a zero mean and a white Gaussian distribution with a
variance of EfmðkÞmTðjÞg ¼ Rdkj.

3.4. KF-B2PNN data fusion scheme

The KF-B2PNN data fusion scheme proposed in this
study is designed to obtain highly accurate solutions to
IHCPs. The three parameters known to have a direct influ-
ence on the solution errors are taken as inputs [14–17],
i.e., the Kalman gain KðkÞ, the difference between the mea-
sured temperature ZðkÞ and the estimated temperaturebX ðkÞ, and the difference between the predicted temperaturebX ðk j k � 1Þ and the estimated temperature. Since the exact
state X ðkÞ is known (as far as simulation is concerned), the
supervised learning algorithm can use the signal Error ¼
X ðkÞ � bX ðkÞ (i.e., the difference between the known state
and the estimated state) to train the network. During oper-
ation, the output of the neural network (Error) is used to
correct the state estimate.

4. Framework of forward and inverse techniques

The test cases presented in this study consider boundary
heat fluxes with a variety of both simple and complex wave-
forms. The solutions of the forward heat conduction prob-
lems obtained using the CHNN method are then used in
the subsequent IHCP analysis performed using a stand-alone
BPNN and the proposed KF-B2PNN scheme to estimate the
boundary conditions. Initially, this study considers three
conventional heat conduction problems, namely a ‘‘triangu-
lar” initial temperature profile in a bar, a time-varying heat
flux with a triangular profile, and a surface subjected to a con-
stant flux. In the first two cases, the CHNN results are com-
pared to the exact solutions in order to verify the accuracy of
the proposed CHNN scheme. In the third case, the CHNN
solutions are compared with those of the Finite Difference
Method. Having confirmed the accuracy of the CHNN
method in solving conventional forward heat conduction
problems, the scheme is applied to solve three rather more
complicated time-varying boundary heat flux problems.

In the current forward and inverse neural network anal-
ysis procedure, the B2PNN algorithm used to solve the cur-
rent IHCPs is designed with 6 nodes in the input layer, 15
nodes in the hidden layer, and 6 nodes in the output layer.
The nodes in the hidden layer are assigned a sigmoid acti-
vation function, while those in the output layer have a
linear activation function.

In the current analysis procedure, the solutions obtained
by the CHNN scheme for the forward heat conduction
problems provide temperature data corresponding to a
number of specified points inside the domain. These tem-
perature data are then used as the input to the inverse
KF-B2PNN procedure used to estimate the boundary con-
ditions. To reflect actual engineering problems, a measure-
ment noise of 10E–4 is added to the results of the
temperature data to use as inputs to the BPN. Fig. 3
presents a flowchart of the forward and inverse neural
network analysis procedure carried out in this study. As
shown, respective pairs of the boundary conditions and
the temperature data calculated at specified points in the
domain by the CHNN are used to train the KF-B2PNN
using various training methods. The forward heat conduc-
tion problems are solved for arbitrarily assigned boundary
conditions to obtain temperature distributions in the
domain of interest. The boundary conditions for a given
set of calculated temperature data are then predicted using
the trained neural network. Finally, the predicted bound-
ary conditions are compared with the arbitrarily assigned
boundary conditions in the previous step to confirm the
accuracy of the proposed approach.
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In evaluating the performance of the neural network,
the accuracy of the outputs obtained under each of the dif-
ferent training methods was evaluated using the root mean
square error (MSE) indicator, i.e.,

MSE ¼ 1

n

Xn

i¼1

ðymea
i � dexa

i Þ
2 ð10Þ

where ymea is the neural network solution at time t, d exa is
the analytical solution or desired output for the same input
data at time t, and n is the number of measurements.
5. Results and discussion

5.1. Forward problems

This study considered a total of six different heat flux
profiles. In the first two cases, the CHNN results were com-
pared to the exact solutions to verify the accuracy of the
proposed CHNN scheme. In the third case, the solutions
of the CHNN scheme were compared to those of the
FDM method. Having confirmed its performance in solv-
ing conventional heat conduction problems, the CHNN
method was then applied to three more complicated time-
varying boundary heat flux problems. Again, the solutions
of the CHNN scheme and the FDM method were com-
pared. The six heat flux profiles were as follows:

(a) Case 1: A triangular temperature profile within a lat-
erally insulated bar of length L, whose ends are main-
tained at zero temperature. The initial temperature is
given by:
f ðxÞ ¼
x 0 < x < L=2

L� x 2=L < x < L

�
ð11aÞ
The exact solution is [30]:

T ðx; tÞ ¼ 4L
p2

sin
px
L

exp � cp
L

� �2

t
� �

� 1

9
sin

3px
L

(

� exp � 3cp
L

� �2

t

" #
þ� � � �

)
ð11bÞ
(b) Case 2: A time-varying heat flux with a triangular
profile. Prior to tþ ¼ 0, the heat flux is zero. When
t+ lies between zero and 0.6, the surface flux, q,
increases linearly with time. For t+ > 0.6, the flux
decreases linearly to zero at t+ > 1.2 and remains at
zero thereafter. The exact solutions for the tempera-
ture at xþ ¼ 0 and xþ ¼ 1 for the linear heat flux
are given by [1, pp. 169–171]:
/þð0; tþÞ ¼ 1

2
ðtþÞ2 þ 1

3
tþ � 1

45

þ 2

p4

X1
n¼1

1

n4
expð�p2n2tþÞ ð12aÞ

/þð1; tþÞ ¼ 1

2
ðtþÞ2 � 1

6
tþ þ 7

360

þ 2

p4

X1
n¼1

ð�1Þn

n4
expð�p2n2tþÞ ð12bÞ

Tþðx; tþÞ ¼

/þðxþ; tþÞ 0 < tþ 6 0:6

/þðxþ; tþÞ � 2/þðxþ; tþ � 0:6Þ
0:6 < tþ 6 1:2

/þðxþ; tþÞ � 2/þðxþ; tþ � 0:6Þ
þ/þðxþ; tþ � 1:2Þ tþ > 1:2

8>>>>><>>>>>:
ð12cÞ
(c) Case 3: The initial temperature of a finite solid cylin-
der is zero and its surface is subjected to a constant
flux. The temperature distribution in the cylinder is
given by [31,1, pp. 17–18]:
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Tþa ðrþ; tþa Þ ¼ 2tþa þ
1

2
ðrþÞ2 � 1

4
� 2

X1
n¼1

e�b2
ntþa

J 0ðrþbnÞ
b2

nJ 0ðbnÞ
ð13aÞ

where bn, n = 1, 2, . . . , are the positive roots of the
Bessel function,

J 1ðbnÞ ¼ 0 ð13bÞ
a is the cylinder radius, and

Tþa ðrþ; tþa Þ �
½T ðr; tÞ � T 0�k

qca
; tþa �

at
a2
; rþ � r

a
ð13cÞ
(d) Case 4: The time-varying flux has a step profile fol-
lowed by a ramp profile (step-ramp profile) from
t = 0 to t = 6 with a time interval of 0.01, i.e.,
qðtÞ ¼
0 0 < t 6 1

1 1 < t 6 3
1

750
t � 0:2 3 < t 6 6

8><>: ð14Þ
(e) Case 5: The time-varying flux has a triangular profile
followed by a sine profile (triangular-sine profile)
from t = 0 to t = 6 with a time interval of 0.01, i.e.,
qðtÞ ¼

0:3 0:0 < t 6 1:0

0:007t � 0:4 1:0 < t 6 2:0

�0:005t þ 2 2:0 < t 6 3:0

0:5 3:0 < t 6 3:3

0:5 1þ sin p
150

t
	 
	 


3:3 < t 6 5:8

0:3 5:8 < t 6 6:0

8>>>>>>>>><>>>>>>>>>:
ð15Þ
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T

π=x
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. 4. Comparison of exact and CHNN solutions for initial triangular tem
(f) Case 6: The time-varying flux has a sine profile fol-
lowed by a second sine profile (sine–sine profile) from
t = 0 to t = 6 with a time interval of 0.01, i.e.,
sec

ec

sec

c

perat
qðtÞ ¼
sinð2pt=250Þ 0 < t 6 3

0:5 sinð2pt=250Þ þ 0:5 sinð2pt=25Þ 3 < t 6 6

�
ð16Þ

Note that for reasons of heat flux rationality, only
values greater than zero are applied.
5.2. Results of forward heat conduction problems

Figs. 4 and 5 compare the exact solutions and the
CHNN solutions for Cases 1 and 2, respectively. The
MSE for the CHNN results of Case 1 is 1.61E-06. For Case
2, the MSE at x = 0 is 1.32E-08 while at x = 1, the MSE is
1E-09. Eq. (12c) provides the numerical values of T ð0; tþÞ
for the case of a triangular time-varying heat flux. The cor-
responding results are presented in Fig. 5 for dtþ ¼ 0:06.

In Case 3, the initial temperature of the finite solid cyl-
inder is zero and the surface is subjected to a constant flux.
The resulting temperature distribution is solved using both
the CHNN scheme and the FDM numerical technique. The
MSE results for the two methods at r = 0 are found to be
5.23E-08 for the CHNN method and 4.27E-07 for the
FDM method.

The results of Cases 1 to 3 indicate that the CHNN
method provides accurate solutions for the temperature
distribution in forward heat conduction problems, irrespec-
tive of the initial temperature or the nature of the heat flux
2 2.5 3

exact solution
CHNN solution

ure distribution in laterally insulated bar of length p and c = 1.
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variation at the boundary over time. The results of Cases 1
and 2 show that the solutions of the CHNN scheme are in
good agreement with the exact results. Significantly, the
results of Case 3 indicate that the performance of the
CHNN method is slightly better than that of the FDM
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Fig. 6. Comparison of CHNN and FDM result
approach. Having confirmed the capability of the CHNN
method in solving the standard heat conduction problems
of Cases 1 to 3, the CHNN scheme was then applied to a
series of heat conduction problems with more complicated
heat flux profiles (Cases 4–6).
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5.3. Inverse heat conduction problems

In this study, the training data for the stand-alone
BPNN were prepared by using the CHNN method to solve
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forward heat problems with boundary conditions of an
arbitrarily assigned heat flux, q. Initially, the CHNN Eqs.
(1a)–(1e) were discretized. In the discretization procedure,
the calculation domain was divided into 6 nodal points,
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values of the heat flux, q, and the temperature distribution,
T, were prepared, and the value of the time constant was
generated in the range 0–6 s. A total of 601 sets of time-his-
tory temperature data were obtained for each of the heat
fluxes in Cases 4–6, shown in Figs. 6 and 7 (top left) and
Fig. 8 (bottom right), respectively. These data were used
as the boundary conditions for the forward problems.
For each of the heat flux cases, a total of 2404 sets of tem-
perature history data (corresponding to 4 different mea-
surement positions) were calculated by the CHNN
method, as indicated by the curves plotted in Figs. 6–8
by the circular symbols. These temperature data were then
used to train the stand-alone BPNN and the KF- B2PNN
scheme.

The stand-alone BPNN assumed the following parame-
ters: 15 units in the hidden layer, a learning rate of 0.0001,
a momentum rate of 0.09, and 3000 convergence iterations.
Table 1
Backpropagation neural networks to perform of eight training algorithms in t

Type Case 4

Iterations MSE

Algorithm QNB 211 0.000981
LMB 56 0.000816
CRB 3000 0.001020
SCB 964 0.000997
CBP 500 0.000999
OSB 3000 0.001283
GMB 3000 0.008931
CBF 3000 0.001798
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Fig. 9. Target and predicted heat fluxes
Network training was performed using 8 different algo-
rithms, i.e., QNB, LMB, CRB, SCB, CBP, OSB, GMB,
CBF. Table 1 compares the convergence characteristics of
the 8 training algorithms when applied to Cases 4, 5 and
6 in the stand-alone BPNN environment. Note that the tar-
get error was specified as 0.001. For Cases 4 and 5, it can be
seen that the QNB and LMB algorithms have a better con-
vergence performance than the other algorithms and that
the LMB scheme achieves the minimum MSE. For Case
6, the LMB algorithm again provides the best convergence
performance. However, it not only fails to achieve the
target error of 0.001, but also requires a large number of
iterations.

Having completed the training stage, the LMB-trained
stand-alone BPNN and the KF-B2PNN scheme were
applied to inversely solve Cases 4, 5 and 6. In the IHCP
(recalling) stage for these three cases, a total of 300 sets
erms of iterations and MSE for one-dimensional cases

Case 5 Case 6

Iterations MSE Iterations MSE

216 0.001000 3000 0.003661
35 0.000972 3000 0.002882

3000 0.001880 3000 0.034049
3000 0.000998 3000 0.024123
3000 0.001119 355 0.038943
2105 0.000999 3000 0.035751
3000 0.005648 3000 0.059163
442 0.000999 472 0.040512

3 4 5 6

ime

KF-B2PNN
LMB
Target

of one-dimensional IHCP in Case 4.
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of temperature history data (corresponding to 4 different
measurement positions) were calculated by the CHNN
method, and the target error was reduced to 0.00001. The
MSE values of the outputs provided by the KF-B2PNN
scheme for Cases 4–6 were found to be 1.223E-11,
1.116E-11, and 3.190E-11, respectively, while those
obtained from the LMB-trained network for the same cases
were 8.811E-06, 1.243E-06, and 2.432E-06, respectively.
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Figs. 9–11 show the heat flux profiles of Cases 4–6
(denoted by circular symbols) used as the boundary condi-
tions for the forward problems solved by the CHNN
scheme. Meanwhile, the outputs from the trained KF-
B2PNN scheme are indicated by the curves plotted using
cross symbols, and those obtained from the LMB-trained
network are indicated by the curves plotted using asterisk
symbols. It is clear that the results of the KF-B2PNN
scheme are in better agreement with the target heat flux
profiles than those of the LMB-trained network.

6. Conclusion

This paper has proposed a KF-B2PNN scheme for the
solution of IHCPs. The scheme integrates the standard
Kalman filter with a Bayesian Back Propagation Neural
Network. Initially, a Continuous-time analogue Hopfield
Neural Network was applied to solve a number of forward
heat conduction problems. The resulting temperature data
were then used to train a conventional stand-alone BPNN
and the KF-B2PNN scheme. Through simulation, the per-
formance of the proposed KF-B2PNN scheme was evalu-
ated and compared with that of the conventional Back
Propagation Neural Network. The results indicated that
the KF-B2PNN scheme successfully achieves the target
rms error of 0.00001 for the current IHCPs. Therefore,
the proposed method is capable of predicting the unknown
parameters in IHCPs with an acceptance error tolerance.
Furthermore, its performance is superior to that of the con-
ventional BPNN approach.
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